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Inspecting the phase pattern, we find that for the limit cycles we have v< an - 2b 
and a ) 26. Within the region defined by these inequalities the fiction f (Y, s) moving 
along the curve (9) changes its sign once only, namely at the point of intersection of (9) 
with the hyperbola (the line z = v i- 2b does not intersect (9) within this region). If 

the curves (9) and (12) intersected each other at more than two points, then the function 
f (Y, z) would change sign more than once on (9). 

The author thanks N. N, Bautin for useful remarks. 
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The problem of choosing a law of time variation of controlling forces of bounded abso- 
lute value which ensure a minimal deviation measure at the end of the trajectory and a 
minimal control measure is investigated for linear systems with a fixed time of motion. 
It shows that a unique optimal trajectory and a unique control exist for this optimal ter- 
minal control problem. The possibility of using the Pontriagin maximum principle to 
solve this problem is demonstrated and the practical difficiulties of such an approach 
are pointed out. These difficulties can be overcome by meaus of the proposed approxi- 
mate method for solving the two-point boundary value problem arising from the appli- 
cation of the maximum principle. A procedure for the practical realization of the above 
method on a computer is described. 

1. Formulrtion of the problem. Let the motion of some system be descri- 
bed by the following differential equations with variable coefficients : 

II m 

U” 

V=Zl P=il 

Here Z+ are the phase coordinates of the system in question ; a,,(t) and b,,,, (i) are the 
system parameters varying continuously with time ; f,, (t) are the prescribed external 

forces ; I+, (t) are the controlling forces of bounded absolute value whose law of variation 
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is to be determined. 
The vector function u (t) = )I up (t) 11 (m X I), which we shall call the “permissible 

control”, is a measurable function which at each instant t, to \<t ft, belongs to a paral- 

lelepiped of the m-dimensional space of the variables ur, . . ., um 

u (t) E u = {I up(t) I < u,, todtdti @=I,..., m) (1.2) 

The solution of differential equations (1.1) for some u (t) 6 U will be denoted by 
ZV (t, u) (Y = 1, 

, P=l 
We assume that the time tl has been specified in advance, that the weight coefficients 

cp (t) ,are known nonnegative functions, and that these coefficients can vanish at only a 

finite number of points in the time interval to d t d tl . 
We call the permissible control which solves the above problem the “optimal control”, 

and the corresponding trajectory of system (1.1) the “optimal trajectory”. 

Several authors [l-4] have investigated the problem for the case where Q, (t) 2 0 
(p = 1, . . .( m). The presence of the functional E (u, u) whose value is the control meas- 

ure requires special investigation. 

2. Problem8 of exiltence rnd Un!quIRa88, Proceeding as in [5], We can 
readily show that our problem has one and only one optimal trajectory, and that fulfil- 
ment of the B-condition (whereby m d n and the rank of the matrix B (t) is equal tom- 

almost everywhere in the time interval t0 < t d tr) implies that the optimal control is 
unique. 

3. Solution of the problem. Proceeding from system of differential equa- 

tions (1. l), we can readily show that the expression for the functional R (u, u) can be 
rewritten as i, n n 

%P (1) VP + i i 

4 (3.1) 

R(u, u) = 
S[z 2 h,(t) vp + i 1, (t) ZJ dt + a 2 (Z”“)? 
1. v=1p==1 "=I #?=I .4=1 v=l 

1’. Derivation of the maximum principle. Recalling the results of [S] 
and making use of expression (3.1). we can find the optimal control law from the maxi- 
mum conditions for the function 

--[~l$uv~~q~v~p+ i ‘jj bvpG)wp+ i fvWv+; 5 cp (t) UP2 ] (3.2) 

“=I p=r v=l P=l 

with respect to the variables ul, . . ., u, in the domain U, where $,, (t) is a nontrivial 
solution of the system of differential equations 

Since the function H* for fixed h, = I#~ - 4 and z,, reaches its maximum together 
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with the expression (3.4) 

H (1 (t), u) = 5 S, (t, i) y, - +- i cp (t) up27 s, (t. 1) = i b,,,(t) h,, (13 = 1, . . ., m) 

I;=1 P=l “El 
we can see that if the controlling forces vary according to the law 

Ulp (t, I) = 1 s, (4 9 / cp (t) for I S, (h J4 I < cp (t) up 
U, sign S, (t. 5) for I S, (4 Q I > cp 6) u, 

(;,=I,..., m) (3.5) 

where h is a nontrivial solution of the associated system 

% _=- 
i al*” (t) $1 hy(tl)-_-Zy(tlr w) (v=l,. . .I 4 (3.6) 

dt 
p=1 

then the function H* reaches its absolute maximum with respect to the variables ur, . . , 

. . . . u,. in the domain U. 
We call a permissible control given by law (3.5) an “extremal control” and the cor- 

responding trajectory of system (1.1) an “extremal trajectory”. It is easy to show (e. g. 
see [S], pp. 202-206) that fulfilment of the generalized general position condition, i.e. 
if at any instant t, to < t < tr and for any rib,u of the parallelepiped U the vectors 

Bl (t) u, B2(t)u,. . ., B,(t)u 

are linearly independent in the phase-coordinate space, where the symbols Br (t), Bn (t),. . . 

. . . . B, (t) represent the matrices 

B1 (t) := B (t), 
dBj-1 (t) 

Bj,(t) = - A (t) Bjml (t) f--r (i = 2, . . .) 4 

then the functions S, (t, A.) (p = i, . . ., 4 for any nontrivial solution h (t) =,I 1 h, (t) 11 

11 (n X 1) of associated system (3.6) can vanish at only a finite number of points in the 

time interval t, < t < tr . This means that provided the generalized general position 
condition is fulfilled, expressions (3.5) unique!y define the extremal control, which in 
this case is a continuous vector function of time. 

It should be noted that the matrices B, (t), Bs (t), . . ., Bn(t) can be determined only 
if the functions byp-(t) have n - 1 derivatives, and the functions a,+ (t) have n - 2 
derivatives. From now on we shall assume that the generalized general position condi- 

tion is fulfilled for system (1.1). 
2’. Sufficiency of the maximum principle. It is clear from the results 

of the previous subsection that the optimal control must be one of the extremal controls. 
Let us show that fulfilment of the generalized condition of positional generality implies 
that an extremal control is optimal, i. e. that the maximum principle in the case of our 

problem is not only a necessary, but also the sufficient, condition of optimality. To this 

end we introduce the functional 

K (u. u) = ; 2 xv9 (tl, ,+$ c,(t)Up._2d~]dt 

$1 

(3.7) 
>=r o P=l 

in which the function a+ (t) is given by the expression 

Q,* (t) = 3 2, (k u) [h,* (t) + X” @I’ w*)l (3.3) 
v=1 

where &,* (t) i.s the solution of system (3.6) under the boundary conditions 

h,+ (tr) = - 2, (tr, w) lwZn(,, L*J=w*Ct) (v = 1, . . ., n) (3.9) 

The elements w,,* (t) of the vector function w* (t) are defined by law (3.5) for 
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& (t) = A?+$* (t) (v= 1, . . ., n). 
By virtue of boundary conditions (3.9), 

t1 

5 
d@,*(l) dl _ 

dt - - i 2; P,* (4)) + 2, (tl* WI 
to v=l 

K(u, u) = J (u, u) = i zyo lh,’ ($) + xv @I, w’)l (3.10) 
“=I 

Thus, the functionals K (u, u) and J (u, u); which differ by a constant independent 
of the vector element u , reach their minima simultaneously. 

On the other hand, recalling (1.1). (3.6). (3.9), we find from (3.8) that 

d@* (t) 
dt= 

n dxy(t, u) 

2 dt 
[h”’ (t)+ 5, (tl, w')] + i x,(t, u)!!$!L 

“=I 

X” (tl, w') (X11) 

Substituting (3.11) for d@* (t) / dt into the right side of (3.7). we obtain the following 
expression : ?I 

K(u, u)=; 2 1%” (tl, 4 - zy(tl, w*)]Z- 

"=I 

-f{i[i ~.,W(l)],up-~ $j c,W,,]dt+K* (3.12) 
to pE1 “Cl P=l 

where K* denotes the following constant independent of the vector element u : 

K*=i Z"OX,(tl, w*) - $ i,,.w*)-i[;l f,(t)hv*(t)jdt. (3.13) 
“==I “=I t” “=I 

Expression (3.12) implies that the functional K (u , u ), and therefore the functional 
J (u, u),reaches its minimum if and only if up= up*(t) for all (p = 1, . . ., m), i.e. if 

the extremal control is optimal, QED. 

3’. Discussion of the results. To find the optimal control law in accord- 
ance with the above results we solve system (1.1) for up (t) = wp (t, LL-) (P = 1, . . ., m) 
simultaneously with associated system (3.5) ; the functions w,, (t, k) are defined by law 

(3.5). 
From the mathematical standpoint we are dealing with a nonlinear boundary value 

problem for which no effective method of solution has thus far been developed. The chief 
difficulty lies in finding the initial conditions for the ancilliary variables &,‘ensuring ful- 

filment of the necessary boundary conditions in (3.6). Determination of these constants 
is an independent problem which, as is shown in [7], can be solved by the search method 

[S] on ordinary electronic analog computers. However, the presence of nonlinearities of 
the (3.5) type makes it difficult to prove the convergence of this method (in fact, its 
convergence has not yet been proved). 

This obliges us to seek a different approach to the solution of our problem. Specifically, 
instead of finding the optimal control law directly, we shall first construct a minimizing 
sequence of permissible controls. 

By a ‘minimizing sequence” we mean a sequence of permissible controls such that the 
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corresponding sequence of values of the functional J (u, u) decreases strictly towards 

J (n*, u*) = min J ([I, u) (u e u) 
in the limiting case. 

The idea underlying this method of successive approximations was first proposed by 
Dem’ianov in [4 and 91 and developed in [lo]. However, since the technique as worked 
out in these papers concerns minimization with respect to the deviation measure only, 
it cannot be applied directly because of the presence of the functional E (u, u) in the 
optimality criterion. Some further analysis is required before such an application can 

be made. 

4. The method of ruccs:tive rpproximorfon#. Let us take up (t) = 
=Zb p” (t) (P = 1, * - *, m) as our zeroth appro~mation. Here uPa (t) are arbitrary meas- 

urable functions of time which assume values from the domain U’at every instant t, 

to f t < t, . As already noted, the solution of system (1.1) for up (t) = up0 (t) will be 

denoted by x(t, up) = llzv (t, u”).II (ra X 1). Solving the ancillary adjoint system 

dh,” 

dt=- i apr 0) xPV h,” (h) Lf= -Z”(tl,lP) (y=i,...,n) (4.0 
@L=l 

we obtain the law of variation of the function ;ly D (t) (Y = i, . . ., n). 

Now let us consider the vector function v* (t) = 11 vp4 (t) 11 (m X if, where the elements 
tip0 (t) are given by the formulas 

~pO($)=UPsign[S,(t, I”*]~ep(t)up* (r)] (P=%. -’ r 4 (4.2) 

and the vector function w“ (t) = 11 wPG (t) 11 (m X i), where the wPo (4 are defined by 

the law 
s, (t* Lo) / CQ (1) for 

top0 {t) = 
IS, (t, I”) I < cp Wl V-0, (4.3) 

U, s&n S, (t, I”) for 1 S, (4 no) / > cp (t) U, 
(p = 1,. . . , ml 

It is not difficult to show that 

J (u’, v’) = min J (u”, u) Q J (u’, II’) < J (u’, u”) (u E U) (4.4) 

The validity of this statement follows directly from the theorem which is formulated 

and proved in the Appendix. 
Relation (4.4) implies that two cases are possible: either J (u”, 9) = J (19, u”) or 

JW, P) < J (uQ, u’). In the first of these cases it is easy to show that II” (t) is the op- 
timal control, and that the process is at an end. In the second case we take the follow- 

ing expression as our optimal control law : 

u*(t) = v” (0 I if J (v’, v’) < J (uO, vQ) 

eou’ (t) + (i -au) v* (t), if J (v’, v”) > J (u”, Y*) 
(4.5) 

where the quantity ~0 is given by the formula 
J (v“, v”) - J (u”, v”) 

‘<%= J@O, $2) 
- 2.r (UO, VO) + J (u”, u”) < * (4.6) 

It is not difficult to show that with the first approximation chosen in this way we have 

J (ul, u’) < J (ii”. uO) (4.7) 

Thus, if the zeroth approximation is not optimal, then it is always possible to choose 
the first approximation in such a way that condition (4.7) is fulfilled. 

Let us assume that the kth approximation has already been determined, i. e. that we 

already know the vector functions IS (t), x (t, _uk) = 11 zv (t, uAf 11 (n X f), where 
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xv (t, uk) is the solution of system (1.1) for u,., (t) = ztok (t) (p = 1, . . ., m). Solving 

the ancillary associated system 
dh”k 
r=- i Q$)h$ h,k(t,)=-Z&, uk) (Y= I,..., n) (4.3) 

b.=r 
we obtain the law of variation of the ancillary functions &,k (1) (V = 1, . . ., 7~). Now 

let us consider the vector function vk (t) = ]I upk (t) I( (rnx,l), where the elements uPR (r) 

are given by the formulas 

vpk P) = UPsign [SP (C k”) -- cP (t) uz (t)] (p = I, . . . , m) (4.9) 

and the vector function wh (t) = I] ZD,,~ (t) ]I (m x I), where wpk (t) is defined by the law 

wpk (‘) = 
i 

S, (6 5”) / CP (t) for I S, (6 h”) I < cp (4 Up 

U, sign S, (4 kk) for I S, (t, Lk) I > cp (t) U, 
(p = 1,. . m) (4.10) 

Just as in the case of the zeroth approximation, we have 

J (uk, r”) = min J (uk, u) < J (II”, w”) < J (u”, u”) (u E y) (4.11) 

If J (uk, vk) = J (ukt uk), then uk (t) is the optimal control and the process is at an 
end. If J (uh7 v’) < J (uk, uk) , we take the following expression as our optimal control 

law: 
$4 1 (1) E 

c 

v’; (t) , if J (v/C, v/i) < J (Uk, vk) 

x&(t) + (1 - elk) vh (t), if J (V”,~V’~) > J (Uk, v”) 
(4.12) 

where the quantity ok is given by 

O<uk= 
J ($, v”) _ J (u;, ,,“) 

J (vh’ v’) - 2J (uk v”) + J (u” uk) 
<I. (4.13) 

With the (k + l)-th approximaiion chosen in this manned it is easy to show that 

J (u”‘-‘, uk’ ‘) < J (u”, u”) (4.14) 

The resulting series of permissible controls { uk (t)} and the corresponding sequence 
of trajectories {X (t, u”)} of system (1.1) are such that 

J(u’, u”)> J(u’, d)>. . .>J(u”, u”)>. . . (4.15) 

To prove the fact that the sequences {uk (t)} and {x (t, uk)} are, in fact, minimizing 

sequences in the above sense, we must show that the limit of strongly decreasing sequence 

(4.15) is the smallest of all possible values of the functional J (u, u). We denote the lat- 

ter by J*. The following relation is valid: 

lim [min J (u”, u)] = inf [lim J (u”, v”)] > J’ 
k+x 

(u E U) (4.16) 
k-c: 

The proof of this statement follows closely the proof of the analogous statement in 
the problem of approximate realization of motion along a prescribed trajectory [lo], and 
will therefore be omitted. 

It is now easy to show that 
J*=iEJ(&, uk)=min J(u, u) (UEU) (4.17) 

Let us assume that this is not so. i.e. that there exists a permissible control v (t) 6 u 
such that J(v, v)= J’ -E, E>O 

Then, by virtue of the fact that the functional J(uk, uk) - 2J (uk, V) + J (v, v) is 

nonnegative’ we have J (u”, v) < ‘/? J (uk, uk) + J (v, v)] = J* + ‘/2 E, - 1/z e 

Since Ek - 0 as k 4 00, it follows that for sufficiently large k we have 
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ruin J (I$, u) < J (I&, v) < J’ (u t_L r!) 

which contradicts inequality (4.16). This contradiction means that our assumption is 

invalid. Relation (4.17) has therefore been proved. 

Making use of the results obtained in [6] (pp. 146, 147) in proving the existence theo- 
rems for the time-optimal operation problem and retracing the argument of [IO], we can 
readily show that among the sequences {uk (t)) and (x (t, uk)) there exists a pair of con- 

vergent sequences {u&l (t)} and {xKt, uhl)),whose limits have the following properties : 
U* (f)c U, and x (f, u*) is a continuous vector function. Further, again following the rea- 
soning of [IO], we can readily show that the limit vector function x(t, u*) is unique and 

independent of the choice of the above pair of convergent subsequences, 

Taking the limit as 2 + 0~) we obtain 
2” = min 5(u, u) =rlit J (u”‘. ~"2) = J (u*, u*) 

UEU 
(‘LlS) 

Thus, the resulting sequences {uk (t)) and {x (f, uk)} are, in fact, minimizing sequen- 

ces. 
Recalling relations (4. ll), (4.16),(4.18) and making use of (4, lo), we see that for 

those p for which the measure of the set of zeros of the function 

s, (C n*) = i byp (r) h,’ (t) @==I,. . . , n) (4.19) 
“=r 

is equal to zero, the co~es~nding functions wpkr (t) tend to the unique limit function 

up* (1) = 
{ 

8, (h A’) / cp 0) for is,@, i*)I<c,(t) u, 

U, s&n S, (f , k*) for IS, 6. 5’) ! > cp @I fJ, 
(p = 1, . . . , m) (4.20) 

where A,,* (f) is the solution of the associated system 

n dk*’ - 2 fQJ (t) A,** 5’ (t$ = - T*(ll, U’) (v = 1,. . . , n) (4.21) 
dt 

v.==l 
Thus, the limit vector function u*‘(t), which is the optimal control by virtue of rela- 

tion (4.18). satisfies the Pontriagin maximum principle. 
The statements proved above do not directly imply the uniqueness of the optimal 

control. However, as was pointed out in Sect. 2, fulfilment of the B-condition implies 
the uniqueness of the optimal control by virtue of the uniqueness of the optimal trajec- 
tory. The greatest difficulties in approximate calculation of the optimal control law by 
this method have to do with the solution of the system of the (4.8) type. We know only 

the values of the variables %vh at the instant t = tit so that determination of the law 

of variation of the functions I,,, k (f) on a computer requires that we begin by determin- 
ing the corresponding initial conditions for these variables. As is shown in [ll- 133, the 
fatter can be found by integrating system (4.8) by “working backwards”, i. e. by intro- 
ducing a new independent variable by means of the relation t = tl + t, - u. This trans- 
forms system (4.8) into 

dA?L (a) 
--&-== 5 a,\,(tl+to-u)A~,k(b), A$ (to) = - X” Cl, Ilk) (v = 1,. . I ) 72) (4.22) 

LL=* 
c- - 

Since A vk (of = %,,,k (Q + to - a), it is obvious that the values of the function 
Avh (u) at the instant u = tl serve as the initial conditions for the variables h,k which 

ensure the fulfilment of the boundary conditions in (4.8). 
This enables us to propose the following computation procedure. 
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1”. We choose some permissible control uk (t) = &a~ (t) 11 (n X 1) C U and solve 

system (1.1) for u0 (t) = upR (t). The quantities 2, (t, u*) and J (uk, uR) are found in 
the course of integration. 

2’. We integrate system (4.22) in the limiting case for t, < (I < t, and memorize the 

values of the variables Avk at the instant cr = t,. 
3’. We solve system (4.8) under the initial conditions &k (to) = Avk (!r) and at the 

same time determine the elements v Pk (t) of the vector function vk (t).= }lupk (t) 11 (m X 
X 1) by means of formula (4.9). 

4”. We integrate system (1.1) for up (t) = vpk(t) and at the same time compute the 
quantities J (uk, vk) and J (v”, v&f. 

5’. we compare the quantity J (uk, vk) with the quantity J(uk, I$) ; the computa- 
tion process ends as soon as J (uk, uk) = J (uk, vk). If this does not occur, we compute 

the next approximation from formulas (4.12) and (4.13) by means of ancillary functional 

blocks, and the process begins again. 
Appendix. To prove the theorem used in constructing the minimizing sequence of 

permissible controls we must first establish the validity of the following lemmas. 

Lemma 1. Let uj (t) be any prescribed measurable vector function which assumes 
values in the domain U at every instant t, t, $ t < tl ; let a’ (t) = I~Q’ (t)Il(m X 1) 

be the permissible control defined by the law 

ZJ~ (t) = U, sign [sp (t, Q) - cp ft) ZJ~ (t)], s, (t, G) = 
n 

where A,’ (t) is the solution of the associated system 
d&i 
__-i 

dt - apLy (t) q* hvj (h) = - xv (h, dj (V = 1, . . . , n) 

p-1 

This means that 
J (ui, vj) = min J (uj, u) = min [R (uj, u) f E (uj, u)] (u E U) 

where R (d , u) and E (u’,u) denote the following functionals: 

R (uj, u) = $ jj xV (tr. uj) XV (tr, U) = -$-(x (k. U$X (mf 

“=I 

ep (t) upj (t) up 
1 

dt 

(A.21 

(A.3) 

(A-4) 

(A-5) 

Pro o f , We begin to prove this lemma by transforming the functional Il (u” u). As 

we know, the solution of system (1.1) for some u (t) E Cl can be expressed in matrix 
form, f 

x (t, U) = S (t) + \; X (t) X-‘(a) B (5) U (3) da b4.6) 
. . 
to 

where s (1) is the vector function f 
s (t) = x (t) 2’ + \ x(t) x-1 (a) f (5) As 

i* 
(A-7) 

The matrix function X (t) in the above expression is the normed fundamental matrix 
ofsystem(l.l)for~~(~)~O(p=i ,..., m), f,(t)rO(v=1,..., n);X-‘(c)de- 
notes the inverse of the matrix X (0) . 
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Substituting expression (A. 6) for t = ti into the right side of expression (A. 4), we 
obtain t1 

R(ui, u)=R’-; 
s 

(Br(~)~~(~~*u(~))i~r (I\ .8) 

where R’ denotes the quantity t, 

Rj = I/:! (x (tr. u’) 8 (h)) (.4.9) 

independent of u, and k’ (f) is the vector function 

Aj (t) = ix-1 Q)]‘X’ (h) x (h, 4 (A.lO) 

It is easy to show that the vector function A’ (!) defined by formula (A. 10) is the solu- 
tion of adjoint system (A. 2). 

The expanded form of expression (A. 8) is 

(A.il) 

By virtue of (A, 5) and (A. II), the expression for the functional J (ui, u) becomes 

.I (uj, u) = Ri -s${5[i b,(t) k;(t) - cp (t) ~2 (t) 
I I 

up dt (A.12) 

4 p-1 v-1 

The above expression shows that the functional J (uj, u) assumes its minimum value 
if and only if the up vary according to law (A. 1). Lemma 1 has been proved. 

Lemma 2. Let ui (t) be any given measurable vector function which.assumes 

values in the domain u at every instant t, to < t < tl and let w’ (t) =I 11 wi (t) 11 (m xl) 
be the permissible control defined by the law 

wpj (t) = 
s, (6 a / cp @I for I S, (t, l,j) I < cp (t) u, 

Up sign SC&, X3 for 1 S, fh L3 I >, cp Of u, 
b= 1 ,...,n) (A.131 

where ki (t) is the solution of adjoint system (A. 2). 
The following relation is then valid : 

2R (u.1, w’) + E (wj, wj) = min [ZR (Uj, U) + E (Ut Ufl (UEU) (A.14) 

P r o o f. Recalling expression (A. 11) for the functional R (u! u) we obtain the follow- 

ing expression for the functional 2R (u3, u) + E (u, II) : 

We infer from this expression that the functional 2R (u’, u) + E @, u) becomes mi- 
nimal if and only if up E zap3 (t),where the functions 1~~~ (t) are given by (A. Xi), QED. 

Lemma 3. The following inequality is always valid for any two permissible con- 

trols ui (t) E u, 4 (tf E u: - 
2~ (d, d) < E (d, uj) + E (wj, 4 (A.16) 

The proof of this statement follows directly from the condition of nonnegativeness of 
the functional Ri = E (u’, ui) - 2E (u’, w’) -& R (w’, w’). 

Lemma 4. Let all the conditions of Lemma 2 be fulfilied. The following inequa- 

lity is then valid: 
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.f (~3, df <J (6, d) 
Pro o f. Expression (A. 14) implies that 

2R (ui, wj) + E (~3, ~3) < 2R (ui, uj) + E (ui, uf) 

and by virtue of Lemma 3 we have 
2E (ui, wj) < E (Id, u3) + E (wj. wj) 

(A.17) 

(.%.28) 

(A.19) 

Adding (A. 18) and (A. 19), we obtain 

2R (uj, wj) + 2E @, wj) < 2~ (uj, ~3) + 2E (uj, ttj) 

This implies the validity of Lemma 4. 
The above lemmas clearly imply the following theorem. 

Theorem. The following relation is valid for any given measurable vector function 

u’ (tf which assumes values in the domain U at every instant t, to < t < tl‘: 

J (~3, v3)= min J (d, II)< J (ui, d)< J (d, d) (U E U) (A.20) 

where the elements of the vector functions 

vi (t) =I] ZJ~ (t) II (m x 11, wj PI = II q (9 II (m x 1) 

are given by Formulas (A. 1) and (A. 13), respectively. 
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